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Abstract

A computational study is presented which analyzes details of the flow and heat-transfer behaviors in a novel heat-

transfer-enhancement tube with a low-Reynolds number turbulence model. The tube is constructed with a series of

alternative vertically and horizontally positioned oval pipes connected by transition sections, which bridge a vertically

positioned cross-section to a horizontally positioned one, or vice versa. Results are presented for local as well as overall

flow and heat-transfer parameters, including skin-friction coefficient and Nusselt number. It is found that the transition

sections contribute most to the promotion of heat-transfer but with the penalty of producing the largest pressure drop

per unit length. The geometry of the transition section tends to provoke separation bubbles, which not only attenuate

local heat-transfer rate but also result in higher pressure-loss. The study demonstrates that, within the range of Rey-

nolds numbers investigated, this new configuration can largely enhance heat-transfer from 40% to over 100% com-

paring to a circular pipe. However, the price is that the pressure drop caused by the former is also generally twice as

much as that of the latter.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Heat-transfer enhancement has been an active and

important subject for many decades. It concerns funda-

mentally the performance of a wide range of indus-

trial devices, especially heat exchangers. Hence, any

improvement of the heat-transfer performance of these

devices implicates great economical potential. Conven-

tionally, problems associated with heat-transfer are

classified into internal/external flow, forced/natural

convection or boundary layer/separated flow, etc., and

researchers tend to conclude that heat-transfer coefficient

Nu can be expressed as a function of Reynolds number

Re, Grashof number Gr and Prandtl number Pr [1–5].

However, Tao et al. [6] indicated that Nu is not only

dependent on fluid velocity and properties, which are
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used to derived non-dimensional parameters Re, Gr and

Pr, but also closely related to the state of the fluid flow.

From energy equation, it can be readily demonstrated

the mechanism of convective heat-transfer goes hands in

hands with the coordination of velocity and temperature

fields. This concept offers a better understanding of a

number of heat-transfer phenomena, and most impor-

tantly, the development of new heat-transfer enhance-

ment approaches. As shown in Fig. 1(a), a staggered oval

pipe is an example of one of such approaches to improve

the heat-transfer rate in heat exchangers. This configu-

ration can be used to construct tube bank in boilers, to

replace circular pipes in condensers or evaporators in air

conditioners, or any device, which includes pipes in its

heat-exchange components. Guo [7] measured such a

staggered oval pipe, which enhances heat-transfer up to

300% compared with a circular pipe with only a mod-

erate penalty of increase in skin-friction between 30%

and 120%. This demonstrates the favorable heat-transfer

performance of such configuration and its economical
ed.
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Nomenclature

cl, fl coefficients in Eddy-viscosity relation

g gravity acceleration

k turbulence energy

p pressure

Re Reynolds number

T temperature

ui velocity vector

xi Cartesian coordinates

b thermal expansions coefficient of air

rk , re, rt diffusion coefficients for k, e, and t equa-

tions, respectively

dy normal distance from the wall

e dissipation rate of k
~e homogeneous dissipation rate of k
lt, mt dynamic and kinematic turbulence viscosity

q fluid density

(a)

(b)

Fig. 1. The geometry configuration of the staggered oval pipe, (a) overall view, and (b) the positions of eight different locations.
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potential. However, Guo’s measurement does not in-

clude either details of the flow and temperature fields or

discussions on the most important factors contributing
to heat-transfer enhancement. This paper studies the flow

in Guo’s experiment numerically, aiming to provide de-

tails of the flow inside such a configuration and, most
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importantly, analyze local as well as overall heat-transfer

behaviors along the pipe to identify the most significant

heat-transfer promoting factors.

Since the geometry of the current configuration is

complicated, containing discontinue geometry curvature

prone to create localized circulation bubbles, this paper

employs a low-Reynolds number turbulence model to

resolve the details inside the separation bubble and the

near-wall region. A low-Reynolds number model re-

quires particular fine near-wall mesh to achieve yþ of the

first near-wall cell the order of unity. Such a fine near-

wall mesh naturally provides good numerical accuracy

to resolve skin-friction as well as wall heat flux.
2. Turbulence model

The well-known low-Reynolds number k–e model of

Launder and Sharma [8] is adopted in this study. This

model has been tested against a wind range of flows [9].

Although its predictive accuracy is not always satisfac-

tory, it at least demonstrates the ability to capture

important flow phenomena in most flow conditions. To

this end, the Navier–Stokes equations together with

Launder–Sharma model can be written as
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function:
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The model coefficients in the above equations are

rt ¼ 0:9; rk ¼ 1:0; re ¼ 1:3; c1 ¼ 1:44;

c2 ¼ 1:92; f2 ¼ 1:0 � 0:3 expð�eR2
t Þ ð8Þ

No-slip condition has been applied on pipe’s outer sur-

face, resulting in

ui ¼ k ¼ ~e ¼ 0 ð9Þ

3. Numerical framework

Calculation reported herein have been performed

with the unstructured-mesh, fully collocated, finite-vol-

ume code, ‘USTREAM’ developed by the first named

author. This is the descendent of the structured-mesh,

multi-block code of ‘STREAM’ [10]. Convection of

mean-flow as well as turbulence quantities is approxi-

mated with the scheme ‘UMIST’ [11], a second-order

TVD implementation of the QUICK scheme of Leonard

[12]. Within this scheme, the transport solutions and the

pressure-correction equation are solved sequentially and

iterated to convergence, defined by reference to Euclid-

ean residual norms for mass, the moment components

and the temperature. A fully implicit scheme, with the

time variation approximated to second-order accuracy,

is incorporated to solve unsteady problems.

The following describes the discretization practices of

USTREAM. A general conservation equation in arbi-

trary coordinate system can be written as

o

ot
ðq/Þ þ divðq~u/ � C/r/Þ ¼ s/ ð10Þ

where / stands for any of the independent variables ui,
k, e, etc. and C/, s/ are the associated diffusion and

source coefficients, which can be deduced from the

parent equations. By integrating Eq. (10) over an arbi-

trary volume V bounded by a closed surface S can be

written as

d
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where~S is the surface vector. If V and S are, respectively,

taken to be the volume Vp and discrete faces Sj
ðj ¼ 1;Nf Þ of a computational cell, Eq. (11) becomes
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From here onwards, approximations are introduced.

The first term on the left-hand-side of Eq. (12) is dis-

cretized as

d

dt

Z
Vp

q/dV ffi
ðq/V Þn

p � ðq/V Þo

p

dt
ð13Þ



Table 1

The results of the grid-independent test

Grid size Nu=Pr1=3 f

30 · 20 · 300 120.9 0.0605

45 · 30 · 540 111.76 0.0637

60 · 40 · 700 111.21 0.0642

Nu and f are defined in Eqs. (16) and (17), respectively.
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where the superscripts n and o refer to ‘new’ and ‘old’

time levels, respectively, separated by an interval dt. The

second left-hand-side of Eq. (12) is split into the sepa-

rated contributions Cj and Dj due to convection and

diffusion, respectively, and each is expressed in terms of

averaged values over cell faces, denoted by ð Þj thusXNf

j¼1

Z
S
ðq~u/ � C/r/Þ 	 d~S

ffi
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The diffusion terms Dj are approximated by face-cen-

tered expressions of the form
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j ð/N
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n
� f l

j r/ 	~dPN

o
j

�
ð15Þ

where the first term in the brackets represents the nor-

mal diffusion between cell-centered node P and the

neighboring cell-centered node N and the second term

within the curly bracket is the cross-diffusion term.

Terms fj are geometrical factors, ~dPN is the distance

vector between P and N , and C/;j is the interpolated face

diffusivity.
4. Results and discussion

The geometry of the staggered elliptical pipe is shown

in Fig. 1(a). As seen, the initial section is circular with d
in diameter. It is bridged to a horizontally positioned

elliptical section by a transition section. This horizontal

section is then connected to a vertically positioned

elliptical section, again, via another transition section.

The pattern of alternating horizontal and vertical sec-

tion arrangement is then repeating until end of the tube

where the final section becomes circular again. Here, the

long and short diameters of all elliptic sections are da
and db, respectively, while the length of a section unit,

including a transition section and a constant-area elliptic

section, is l. In this paper the values of d, da, db, l and the

length of a transition section lt are 16.5, 20, 13, 40 and 6

mm, respectively. In computation, a uniform velocity u0

with constant low fluid temperature TL is specified at the

inlet, while the tube wall is no-slip and maintained at a

constant high temperature TH. In this flow condition,

Reynolds number Re is defined, according to the

geometry of the initial circular-cross-section pipe, as u0d
m .

This makes the entrance flow condition identical to a

pure-circular pipe at the same Reynolds number thus

facilitates the comparison of the heat-transfer perfor-
mance between the staggered oval pipe and circular pipe.

Since the geometry of the pipe’s cross-section is sym-

metrical, only a quarter of the cross-section is adopted

as the computational domain. Initial computation

showed that both flow and temperature fields become

periodical at the eighth section unit, hence, the final

computational domain comprises 12 section units,

among which the tenth unit is taken for the analytical

purpose. Three different grid sizes have been constructed

and tested with Re ¼ 20; 000 to identify an appropriate

mesh size to achieve grid-independent solution. Results

of this grid-independent test are given in Table 1. One

can see that the differences of averaged Nusselt number

and skin-friction coefficient obtained from the medium

mesh and the finest mesh are all less than 1%, demon-

strating that the medium mesh with 45 · 30· 540 in ra-

dial, circumferential, and axial directions, is fine enough

to ensure a grid-independent solution. In this mesh,

particular fine grid, 70 nodes, in axial direction are

allocated to each of the final 4 section units, aiming to

resolve details of some localized regions. Also, the

averaged yþ value with Re ¼ 60; 000 (the highest Rey-

nolds number investigated in this paper) is only 0.89,

indicating that the near-wall grid is fine enough to em-

ploy a low-Reynolds number model. The application of

inlet and wall boundary conditions is straight forwards

and needs no further description. A zero-gradient

boundary condition is used for the exit. This seems to

contradict with the periodical nature of the pipe. How-

ever, considering that the outlet flow condition is applied

at the 12th section unit, located far downstream of the

tenth section unit, which all the results are extracted

from, one can expect that this flow condition would pose

little effect on the results far upstream from its location,

especially with Reynolds number at a fairly high level

(the flow tends to show a parabolic behavior rather than

an elliptic one).

As seen in Fig. 1(b), eight locations, where flow and

temperature information will be extracted and post-

processed, are then positioned along the axial direction

of the tenth unit. Based on the local axial length of the

tenth unit, the positions of these eight locations are

0:01l, 0:075l, 0:125l, 0:175l, 0:2l, 0:325l, 0:45l and

0:575l, respectively. Among them, the first three posi-

tions are located in the transition section. In the fol-

lowing, computational results associated with the tenth
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unit at flow condition of Re ¼ 20; 000 are presented in

Figs. 2–6. Fig. 2 shows u–v velocity vectors and pressure-

contours at the eight different locations. Here, the

magnitude of the secondary flow in the horizontally

positioned elliptic section is much smaller than that in

the transition section, hence, the velocity vectors of
Fig. 2. Pressure-contours and velocity vectors at x–y plane for eigh
locations 5–8 are plotted with a scale 1.6 times larger

than that for the first four locations. Additionally, two

cross-sections at h ¼ 90� and 0�, showing v–w and u–w
velocity vectors, are given in Fig. 3. Fig. 4 shows the

variations of the square of averaged velocity magnitude,

averaged pressure and cross-section area along the axial
t different locations; (a) locations 1–4, and (b) locations 5–8.



(a)

(b)

Fig. 3. Velocity vectors at (a) y–z plane, and (b) x–z plane.

420 440 460 480

x (cm)

0.8

0.9

1

1.1

1.2

1.3

P
, V

E
L

2 ,
 A

R
E

A

P
VEL2

Area

Fig. 4. Distributions of averaged pressure and velocity mag-

nitude square along the axial direction.

420 440 460 480
x (cm)

0

50

100

150

200

250

Nu/Pr0.4

Area

N
u

/P
r0

.4
, A

R
E

A

0 30 60 90
Degree

50

100

150

200

250

300

350

400

N
u

/P
r0

.4

location 1
location 2
location 4
location 5
location 6
location 8

(a)

(b)

Fig. 5. Averaged and local Nusselt number distributions, (a)

averaged Nusselt number distributions along the axial direc-

tion, and (b) local Nusselt number distributions at six different

locations.

0 20 40 60 80
Degree

50

75

100

N
u

/P
r0

.4

staggered
circular
oval

Fig. 6. Local Nusselt number distributions for staggered oval

pipe, circular pipe and pure oval pipe at Re ¼ 20; 000.

3436 W.-L. Chen et al. / International Journal of Heat and Mass Transfer 47 (2004) 3431–3439
direction for two section units, while variations of

averaged Nusselt number in axial direction and distri-

butions of local Nusselt number at some selected loca-

tions are plotted in Fig. 5. Here, Nusselt number is

defined as follows:
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Nu ¼ qw

TH � Tave

d
j

ð16Þ

where qw; Tave and j are wall heat flux, sectional aver-

aged temperature and wall conductivity, respectively.

Wall heat flux qw is calculated as qw ¼ j oT
on, in which n is

the normal direction from the wall surface.

As the tube’s cross-section transforming from a ver-

tically positioned elliptic to a horizontally positioned

one in the transition section, the region near h ¼ 90�,
termed region 1, is compressed, whereas, the region near

h ¼ 0�, termed region 2, is expanding. From the velocity

vector and pressure-contour plot at location 1 in Fig.

2(a), this geometry variation initially poses high pressure

on the former region and low pressure at the later. The

pressure difference then creates a strong secondary flow,

driving fluid to flow from region 1 to 2. This flow pattern

continues to the middle of the transition section, loca-

tion 2 in Fig. 2(a). However, the effect of continuing

compression at region 1 and expansion at region 2 acts

to accelerate fluid flow at the former and decelerate fluid

flow at the later. This results in gradually diminishing of

pressure level at region 1, while building up pressure

level at region 2. Eventually, pressure level at region 2

becomes larger than that of region 1 at the later stage of

the transition section as seen from location 3 in Fig. 2(a).

At this location, it is also noticeable that there is a vortex

forming at region 2. Since h ¼ 0� is a symmetric plane

where fluid cannot flow through, it can only curve

backwards and hence form a vortex. This secondary

flow pattern continues for a short length downstream

the end of transition section as shown at locations 4

and 5 in Fig. 2(a) and (b). Further downstream (illus-

trated in Fig. 2(b), locations 6–8) one can see that the

strength of secondary flow readily diminishes along the

horizontally positioned elliptic section. Meanwhile, a

second vortex is gradually developing near region 1 and

becomes comparable, in terms of size, to that near re-

gion 2. Eventually, regarding a quarter of the cross-

section, two major vortexes circulating at opposite

direction form the main structure of the secondary flow

at the later stage of the constant-area section. From the

above discussion, one can readily realize that it is the

transition section, which provides the driving force for

the secondary flow.

Fig. 3 reveals details, especially the appearance of

some separation regions, of the axial flow, which is of

great importance to the heat transfer on the tube wall.

The aforementioned geometrical contraction and

expansion at the transition section near regions 1 and 2,

respectively, are clearly seen in Fig. 3. The velocity

vector in Fig. 3(a) shows flow acceleration exerted by the

geometrical contraction. It also can be noted that there

exists a separation bubble at the immediate downstream

region of the transition-section exit. Evidently, this

separation bubble is formed due to a discontinuity of
geometrical curvature at the exit of the transition sec-

tion. On the other hand, Fig. 3(b) indicates that the

geometrical expansion produces a similar effect to a

diffuser, which results in a massive separation region in

the vicinity of wall at region 2. This separation region

even extends into the constant-area section. A near-wall

separation bubble is well-known to cause attenuation of

wall heat flux at its vicinity, thus, to a certain extent,

reduces the overall performance of the pipe. Therefore,

any axial separation bubble needs to be avoided or re-

duced in size to improve overall heat-transfer rate. The

actual effect of these separation bubbles on the heat-

transfer performance of the current configuration will be

discussed later.

The variations of averaged flow quantities along the

axial direction shown in Fig. 4 reveal the significance of

the effect created by transition section, thought short in

length to the overall pipe. In the figure, the variation of

cross-section area is also cross-plotted primary to pro-

vide visual reference to the axial location. Secondary,

this quantity is directly linked to the variation of sec-

tional-averaged velocity magnitude since the working

fluid is incompressible. Hence, to see how it changes

along the axial direction is important to understand the

overall flow behavior. As seen in Fig. 4, the value of

cross-section area only changes in transition section, in

which it reaches its maximum value at the middle of the

transition section, the location where the geometry of

tube’s cross-section becomes circular. Here, the sec-

tional-averaged square of velocity magnitude, instead of

velocity magnitude, is given since the latter is only a

simple function of cross-section area. This quantity

shows that flow begins to accelerate at the immediate

upstream region of the transition section. The accelera-

tion carries on a short range upon entering the transition

region, and then the flow begins to decelerate due to the

increase of cross-section area. The deceleration tendency

continues until the middle of the transition section,

where the maximum cross-section area is. Further down-

stream until the end of the transition section, the flow

sharply accelerates again most likely due to the com-

bined effects of flow acceleration near h ¼ 90�, the dis-

placement from the massive separation bubble near

h ¼ 0�, and the reduction of the cross-section area.

Upon the exit of the transition section, the accelera-

tion quickly loses its momentum and the flow decelerates

almost all the way along the constant-area section. Also

shown in this plot are the distributions of the sectional-

averaged pressure, the quantity used to evaluate energy

loss. It is readily seen that the sharpest drop of pressure

level also occurs at the transition section, implying that

this section is, on one hand, effective to promote flow

acceleration and produce secondary flow but, on the

other, responsible to the majority of energy loss.

Comparing the sectional-averaged Nusselt number

distributions in Fig. 5(a) and the averaged square of
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velocity magnitude in Fig. 4, one can see that these two

quantities are, to some extent, correlated. However, the

correlation is not good in transition section and the re-

gion immediate downstream of the transition section,

places where separation bubbles exist. The attenuation

effect of a separation bubble on the wall heat-transfer at

its vicinity region can be realized by comparing the

velocity vectors in Fig. 3(a) and the local Nusselt num-

ber distributions in Fig. 5(b). Fig. 3(a) shows that there

exists a separation bubble immediate downstream of the

transition section. The middle position of this separation

bubble can be identified as location 4 in Fig. 1(b), and its

corresponding local Nusselt number distributions are

given in Fig. 5(b). These two plots indicate that the level

of local Nusselt number is particularly low inside the

separation bubble. The local Nusselt number distribu-

tions at location 4 further suggests that this separation

bubble seems to cover an extensive region in the cir-

cumferential direction, from h ¼ 50� to 90� (regarding

a quarter section). The overall effect of this separa-

tion bubble on the attenuation of heat-transfer can be

fully understood from the axial Nusselt number distri-

butions in Fig. 5(a). Here, the existence and the exten-

sion of this separation can be signified by the deep valley

located immediate downstream of the transition sec-

tion. Downstream the reattachment point of separa-

tion bubble, the level of Nusselt number quickly

recovers, reaching a peak but begins to decline along the

axial direction until the entrance of the next transition

section.

Regarding the heat-transfer enhancement of the

current staggered oval pipe configuration, Fig. 6 com-

pares the local Nusselt number distributions from

location 8, fully develop section from a circular pipe,

and that from an oval pipe, all tested with the same flow

condition. Even through the level of Nusselt number

from location 8 is among the lowest within a section

unit, it is clear that it still higher than those from the

other two configurations, demonstrating the favorable

heat-transfer performance of the current configuration.

The averaged Nusselt number and skin-friction distri-

butions of the current configuration and a circular pipe

over a range of Reynolds numbers are given in Figs. 7

and 8, respectively. Here, skin-friction factor is calcu-

lated by estimating sectional pressure drop as follows:

f ¼ Dp
1
2
qU 2

0

d
l

ð17Þ

where, Dp is the pressure difference at the inlet and outlet

of a section unit. While, the Nusselt number and skin-

friction factor in circular tube are estimated from the

following equations [1,13]:

Nus ¼
f
8
ðRe� 1000ÞPrf

1 þ 12:7 f
8

� �1=2ðPr2=3
f � 1Þ

Prf
Prw

� �0:11

ð18Þ
fs ¼ ð0:79 lnðReÞ � 1:64Þ�2 ð19Þ

From Figs. 7 and 8, the results show that the compu-

tational results are in good agreement with the data.

Comparing to traditional tubes, the Nusselt number

distributions shown in Fig. 7 indicate that this configu-

ration can largely enhance heat-transfer, ranging from

40% to more than 100%, depending on Reynolds num-

ber. The effectiveness of heat-transfer enhancement is

more pronounced at low Reynolds number than at high

Reynolds number. However, this achievement does not

come cheap. The penalty is its skin-friction level being

generally two times higher than that from a circular pipe

as shown in Fig. 8. Nevertheless, there is still potential to

further improve the heat-transfer performance of a
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staggered-oval pipe and reduce the pressure-loss, espe-

cially finding a geometry, which can reduce the sizes of

separation bubbles.
5. Conclusions

A novel configuration of heat-transfer-enhancement

pipe has been investigated numerically with a low-Rey-

nolds number k–e model. The computational results are

in good agreement with the measurements. Comparing

to a circular pipe, this configuration can raise averaged

Nusselt number from 40% to more than 100% over a

range of Reynolds number from 104 to 6· 104. However,

the penalty is that the level of pressure drop is also in-

creased twice more than that of circular pipe in general.

By examining the local heat-transfer coefficient along a

section unit, it is found that the transition section, which

connects two differently positioned oval sections, con-

tributes most to the enhancement of heat-transfer. On

the other hand, the middle of an oval section marks the

lowest level of this quantity. However, even at this po-

sition, the level of local Nusselt number is still larger

than that obtained from a circular pipe. Careful inves-

tigation of the flow field shows that there exist some

separation bubbles at the transition sections. These

separation bubbles not only increase the level of pressure

drop but also largely reduce the local heat-transfer rate.

This implies that the effectiveness of heat-transfer

enhancement can be further improved and level of

pressure drop diminished if the separation bubbles can

be eliminated or reduced in size by modifying the

geometry around the transition section. This is, how-

ever, beyond the scope of the current paper and remains

one of the objectives of the future work.
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